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In the Discours préliminaire to the Encyclopédie (Encyclopédie I: xxvi), Jean le Rond 

d’Alembert writes as follows:2 

Finally Newton arrived, for whom Huygens had prepared the road, giving to 
philosophy a shape that it seems she will keep. This great genius saw it was time to 
ban from physics conjectures and vague hypotheses, or at least not take them for 
more than they were worth, and that this science should be submitted to nothing but 
the experiences of geometry. 

We notice how an echo of Nicolas Boileau’s Enfin Malherbe vint, “finally Malherbe 

arrived” (ed. Chéron 1861, 93) gives extra weight to the praise of Newton as the definitive 

culmination of the scientific revolution (d’Alembert knew his belles-lettres just as well as 

his mathematics). A naive reading might further find a specific reference to Newton’s use 

of geometric proofs in the Principia, in contrast to the application of infinitesimal calculus, 

but the defining contrast with conjectures and vague hypotheses shows that this is overly 

naive. Infinitesimal analysis was perfectly at home in the Classe de Géométrie of the 

Académie des sciences, to which d’Alembert belonged, as it was in d’Alembert’s own 

writings. D’Alembert does to Newton what Sainte-Beuve (Chéron 1861: ix) claims Boileau 

has done to Malherbe’s prescription: il l’étend et l’approprie à son siècle, “he extends him 

and takes possession of him for his own century.” And in d’Alembert’s 18th century that 

meant that the permanent shape of natural philosophy brought about by Newton was 

1 Section for Philosophy and Science Studies, Roskilde University, Denmark. 
2 My translation, as all translations in the following. The original runs: 

Newton, à qui la route avoit été préparé par Huyghens, parut enfin, & donna à la Philosophie une 
forme qu’elle semble devoir conserver. Ce grand génie vit qu’il étoit tems de bannir de la Physique 
les conjectures & les hypothèses vagues, ou du moins de ne les donner que pour ce qu’elles valoient, 
& que cette Science devoit être uniquement soûmise aux expériences de la Géométrie. 
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now expressed in the new infinitesimal analysis, whereas the arguments of Galileo, 

Kepler, and Huygens had indeed been just as geometric as those of Newton.3 

That the miscellaneous infinitesimal considerations we find in the 17th century gave rise 

to infinitesimal analysis was conditioned by the preceding creation of the new algebraic 

analysis. This, as well as the preceding consideration concerning d’Alembert, I shall leave 

as a postulate, easily verified however by a glance at Leibniz’s mathematical texts. My 

topic, less worked out by others, is the complex process from which emerged the first,+ 

algebraic level of the new analysis of the 17th century. 

Complex process? Isn’t it quite simple? Al-Khwārizmī created algebra in the 820s; Abū 

Kāmil refined it; Fibonacci reordered it in Latin in 1202 (or 1228); it survived with little 

change and no progress for three centuries—and then Cardano (in some nasty 

interaction with Tartaglia) brought it to a new level, inspiring Viète and Descartes. That is 

the standard story.4 

Standard stories are not necessarily wrong, but this one is. 

There is not much reason to discuss the Arabic developments in any detail, since algebra 

was received in Catholic-Christian Europe only through three channels—efficiently 

through two only. 

One was Gerard of Cremona’s translation of al-Khwārizmī’s algebra, made in Toledo 

around 1170. It did not circulate much—there was not really space for it within the world 

of university learning, but it did circulate modestly; 15 manuscripts survive (Hughes 1986: 

221). 

3 More geometric, we may say: according to Guicciardini (2016), it seems that Newton was right when 
claiming in later times to have possessed the fluxion technique already when producing the Principia in 
1687. 
4 The second half of the story underlies this passage from (Karpinski 1929): 

From the mathematical point of view this treatise by Jacob of Florence, like the similar arithmetic of 
Calandri, marks little advance on the arithmetic and algebra of Leonard of Pisa. The work indicates 
the type of problems which continued current in Italy during the thirteenth to the fifteenth and even 
sixteenth centuries, stimulating abler students of mathematics than this Jacob to researches which 
bore fruit in the sixteenth century in the achievements of Scipione del Ferro, Ferrari, Tartaglia, 
Cardan and Bombelli. 

If even Louis Karpinski knew no better, who in his time would have known better? 
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Another translation was prepared by Robert of Chester (ed. Hughes 1989); we know it 

from three 15th-century manuscripts produced in southern Germany; its particular 

terminology has left no traces whatsoever. The algebraic problems contained in the Liber 

mahameleth (ed. Sesiano 2014) and the few pages introducing the topic in the second 

part of the Liber algorismi (ed. Burnett, Zhao, and Lampe 2007, 163–65) were equally 

ineffectual.5 

In 1202, Fibonacci wrote a first version of the Liber abbaci, in the last chapter of which an 

algebra is contained. A revised version was made in the late 1220s. The best guess is that 

the basic introduction was produced independently by Fibonacci under inspiration from 

Gerard’s translation;6 the illustrating problems were borrowed from many sources, some 

of them indirectly from Abū Kāmil (Høyrup 2022b). A large cluster of problems borrowed 

together, probably inserted in the revised edition, was based on a Latin translation of an 

Arabic treatise drawing upon Abū Kāmil while revising his approach; neither the Latin 

translation nor the Arabic original are known to have survived. Fibonacci’s algebra, on its 

part, did survive as part of the larger treatise; its impact, however, was negligible—Jean 

de Murs drew on it as one of several sources for the algebraic books of his (scarcely 

influential) Quadripartitum numerorum in the mid-14th century (ed. L’Huillier 1990), and it 

was partially copied by Benedetto da Firenze and a few others in the mid-15th century, 

yet without affecting their own algebraic work. 

The essential reception was effectuated by a handful of abbacus masters in the early 14th 

century. 

 
5 Probably during the second quarter of the 13th century, Guglielmo de Lunis made another translation of al-
Khwārizmī’s algebra into either Latin or (rather) the vernacular (Høyrup 2022a, 313–317). Guglielmo may 
have drawn upon Gerard’s translation, but certainly also had direct acquaintance with Arabic material. 
Longer or shorter stretches from its beginning were quoted by Benedetto and two more around 1460, but 
it has left no other traces. A redaction of al-Khwārizmī’s work known as Liber restauracionis (Moyon 2019) is 
probably also to be dated to the 13th or 14th century (possibly, as pointed out by Moyon, a Latin translation 
of an Arabic redaction). It awoke enough interest to be translated into the vernacular around 1400—but 
since its particular notation did not spread further, the interest seems to have subsided soon afterwards. 
6 This seems to follow from Nobuo Miura’s analysis (1981). 
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The immediate source area (a single source can be excluded) must have been Romance-

speaking7 and located somewhere in the Ibero-Provençal area. Compared with Abū Kāmil, 

the level is modest. 

Geometric proofs are absent. Rules are given for the six basic first- and second-degree 

“cases” (equation types) and for those cases of the third and fourth degree that can be 

reduced to these or solved by means of a root extraction. Soon, however, (false) rules 

were also offered for such higher-degree cases that cannot be resolved in these ways. At 

the conditions of the time, they were not easily controlled: the proposed solutions all 

contain radicals, and radicals were never approximated (and higher-degree equations 

were never used for any practical purpose). Such false rules might therefore be useful in 

competitions for positions in municipal abbacus schools and for students. 

Very soon we also see incipient use of abbreviations for the algebraic powers, used in 

particular in formal calculations—for example8 the reduction: 

!"#
$%

 + !"#
$%	'ê	"	

 = $#)#	'ê	*$"#
*	+,-./	'ê	"%

 

(ρ stands for the thing; mê for meno, “less”; + and = are modern; the fraction lines are in 

the original). Since very similar notations had been created in the Maghreb in the 

outgoing 12th century (too late for Fibonacci to know them), it seems almost certain that 

the ideas were borrowed. 

However that may be, some abbacus writers used abbreviations in a way that effectively 

barred their use for symbolic calculations; nobody used them systematically (Høyrup 

2010; 2015). Nor was there any agreement about what the abbreviations should be. This 

was still the situation in 1494, when Luca Pacioli (1494: 67v) summed up the situation in 

the words tot capita tot sensus, “as many heads, so many opinions.” 

Beyond using the abbreviations in formal calculations (which, by the way, could also be 

performed with the names written in full, as Biagio does with censi), in the outgoing 14th 

 
7 There is not a single Arabic loanword in the texts; for the second power of the unknown cosa, “thing,” 
they use censo, rendering the Latin translation census of Arabic māl that had been the Toledo standard in 
the later 12th century. 
8 Siena, Biblioteca Comunale L.IV.21, fol. 404v, Benedetto da Firenze rendering what Biagio “il vecchio” had 
written before ca. 1340. 
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century we also encounter schemes (emulating those used in the arithmetic of Hindu-

Arabic numerals) for the addition and multiplication of polynomials—even they agreeing 

with Maghreb models. From the later 14th century onward, we know some scattered 

instances of the use of several unknowns (essential in Viète’s and Descartes’s algebras), 

and from Pacioli we know that more must have existed; even this, however, was never 

systematized—Pacioli just informs us so that we may know, so he says. 

The source area that inspired the beginning of abbacus algebra must have understood 

the nature of the sequence of algebraic powers as a continued proportion—that is shown 

by the rules for reducible higher-degree cases. This is not strange; this insight had been 

well described by al-Karajī and had spread from him to Arabic algebra. Also other aspects 

of early abbacus algebra make one think of a “diluted al-Karajī” (Høyrup 2011). It is far 

from certain, however, that the first generation of abbacus-algebra writers understood 

what they were borrowing (if they had, the acceptance of the false rules is hard to 

explain9). In 1344, however, Dardi of Pisa showed in his formulation of rules for a huge 

number of cases involving roots of powers that he understood to the full, at least 

practically10—but he never explains the principles involved; that had to wait for Antonio 

de’ Mazzinghi’s work half a century later.11 

Although the system shows its first cracks, Antonio’s naming of the higher powers is 

generally multiplicative—his “cube of cube” is the sixth, not the ninth power. In other 

words, the powers thing, censo, and cube are entities, not functions.12 That was to change 

over the next century, but once again not systematically and not in all writers. Pacioli has 

 
9 For instance, understanding would reveal that the problems: 
 αC = βt+N     and     αK = βt+N 
(t being the unknown thing, C its second and K its third power) can only be solved according to the same 
rule if αC = αK, that is, 

– if α = 0 (which would be meaningless at the time and is in any case excluded since β, t, and N are 
all presupposed to be positive) 

– or if C = K, that is, if t = 0 (still excluded by the number concept of the time) or t = 1; that is, all in 
all, if α = β+N. 

10 (Van Egmond 1983) contains an overview. 
11 Antonio’s explicit understanding may have links to his production of the first tables of composite interest. 
12 Some writers also give pseudo-multiplicative names to higher roots, speaking, e.g., of the fifth root as 
“root of cube root”; others are aware that root-taking is an operation and roots therefore by necessity 
functions (evidently not using this much later term). Antonio introduces the term radice relata for the fifth 
root, and in parallel (that is the crack just mentioned) speaks about the fifth power as the cubo relato. 
Otherwise, his naming for powers remains multiplicative. 
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come to see the powers as functions, which evidently entails the question of how to 

name the fifth and higher prime powers. An alternative system explained by Pacioli 

therefore identifies the powers with their number in the sequence—number being the 

first, which means that Pacioli’s number-names are not exponents, and that the easy rule 

for multiplying by adding exponents does not apply. 

Some writers, understanding that the false rules were false, tried to find better ways. One 

method consisted in transforming homogeneous equations—for instance, taking in a 

problem about a capital growing over 3 years from £100 to £200, not the value after one 

year but the interest per month as unknown; in mathematical principle this is a linear 

transformation, and the one who did it must have had a very good understanding of 

polynomial algebra (very good indeed since the transformation had to be done without 

symbols).13 Whether the inventor understood that the resulting rule was not generally 

valid is not clear, but Dardi (from whom we know about these rules) knew. 

Another way to advance consisted in the invention of specious “roots”—the “cube root 

of 44 with added 5” being 4 because 43 = 44+5×4. In itself this is just a name for the 

solution to the case “cube equal to roots and number,” but at least one treatise from 

around 140014 shows that it can also be used to solve the case “cube and censi equal to 

number”—even this is achieved by a linear substitution and thus asks for mastery of 

polynomial algebra. 

The texts do not explain the methods—only the non-reduced coefficients reveal to us 

how the special rules and the case-transformations were obtained. In consequence these 

ingenious methods apparently did not spread in the environment, and Cardano had to 

reinvent. There was absolutely no impact on the German coß, the next phase in the story. 

The coß descended from abbacus algebra but in an intricate and protracted process. 

Beginning around 1450, a number of German mathematical writers—Friedrich Amann, 

Johannes Regiomontanus, and several anonyms (Amann and Regiomontanus at least 

with background in university culture and astronomy)—took interest in algebra, 

 
13 Analysis in (Høyrup 2022a, 224–226). 
14 Florence, BNC, fondo princ. II.V.152. (Franci & Pancanti 1988) contains an edition of the extensive algebra 
section of the manuscript. Analysis of this aspect of the algebra in (Høyrup 2022a: 246f). 
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apparently as a new mathematical discipline they wanted to learn about. The first 

decades of the reception mirror the messy state of abbacus algebra. The terminology not 

only reflects inspiration from northern Italy (whose “thing” was cossa) as well as Florence 

(where it was cosa); both Amann and Regiomontanus would use several different sets of 

abbreviations, evidently corresponding to their source of the moment; some of the 

anonyms are more messy. There is no reason to be scandalized: what these pioneers 

drew on was equally confused (none of them seem to have had the good luck to stumble 

upon a high-level abbacus algebra); before the Germans could produce coherence of their 

own, they had to make sense of whatever they had been able to find. 

Eclecticism did not last many decades, however. In 1489 Johannes Widmann, university 

educated, published the first large-scale Rechenbuch. It contains no algebra, but already 

in 1486 Widmann had held algebra lectures at Leipzig university. We do not have any text 

showing what he taught except for the announcement referring to “the 24 rules of 

algebra, and that which they presuppose”—the latter specified to include “algorism for 

fractions, ratios and surds.” He can be supposed to have built on a manuscript in his 

possession that still survives—a manuscript which taken as a whole is quite eclectic. But 

we may further suppose that his lectures were in the style of his book, and thus 

systematic (as also suggested by the announcement). Widmann probably used the 

standard notation for powers that we know from manuscripts dated from the following 

years (+ and – were in any case used in his Rechenbuch). 

University lectures were held in Latin. A Latin algebra from no later than 1504 was almost 

certainly written by Andreas Alexander (Folkerts 1996), one of the first specialized 

mathematics lecturers in Leipzig. A related German text about the topic (the Initius 

algebras15) may also be from his hand—if not, somebody else profited from Alexander’s 

work (as actually suggested by some of the formulations). 

Both of these works reduce the number of rules to 8, taking advantage of reducibility 

through division. Neither circulated much; the latter at least was used by Adam Ries, who 

produced the oldest surviving manuscript copy and probably used both for his Coss;16 

 
15 (Ed. Curtze 1902, 435–609). 
16 Thus spelled (in agreement with the title page) so as to distinguish it from the general discipline coß. 
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even that work, however, did not circulate, so the only lasting influence of Alexander’s 

work was the inspiration Christoph Rudolff received from it. We may observe, however, 

that Alexander may have learned from the higher level of Italian abbacus algebra, which 

he seems to have digested though with some approximation.17 

Rudolff, beyond the “8 rules,” took over and established the standard notation for the 

algebraic powers definitively; these notations were still standard when a disgusted 

Descartes had to learn them in the Jesuit school. Rudolff also borrowed the schemes for 

polynomial arithmetic familiar in Italy at least since 1400. 

However, before saying more about Rudolff’s discipline-defining work we should notice 

Heinrich Schreyber’s Ayn new kunstlich Buech, welches gar gewiß und behend lernet nach 

der gemainen regel Detre, welschen Practic, regel falsi unn etlichen regeln Cosse from 1518 

(published under Schreyber’s Latinized name Grammateus in 1521). This is a general 

Rechenbuch, but written before norms crystallized as to what such a book should contain; 

beyond an extensive algebra, it also contains Boethian music theory and bookkeeping, 

otherwise strangers to the Rechenbücher. As Alexander’s algebra, that of Schreyber 

describes the arithmetic of polynomials by means of schemes, and offers a restricted set 

of rules (seven only). Noteworthy, however, is the notation for the algebraic powers: 

instead of the already established standard symbols, Schreyber uses abbreviated ordinal 

numbers, corresponding to exponents: N, pri, 2a, 3a, 4a, etc. It is obvious from the texts 

that both Alexander and Schreyber came from a university background; the latter studied 

at Vienne University from 1507 onward and taught there from 1517 to 1521 (Kaunzner 1970, 

229; Vogel 1975, 589). 

Rudolff was taught by Schreyber, as he tells (1525: 204); whether he frequented the 

university directly is unclear, we know almost nothing about his biography. There is no 

doubt, however, that he knew basic university mathematics—algorism as well as the 

Boethian naming of ratios, both of which he extends: the former (as “algorism of the coß) 

he uses as a framework also for the arithmetic of monomials and polynomials; the latter 

he refers to also when considering ratios between broken numbers. 

 
17 That is, if we disregard the “historical” beginning of the Initius algebras, which is charmingly hilarious and 
quite different from anything Italian I know. 
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Beyond such extensions, Rudolff creates no new mathematical knowledge, but he 

provides order and structure. Beyond what was already said, he teaches the use of a 

second unknown (actually more than two unknowns, but used in a way where never 

more than two are in play at a time, so two names suffice—Pacioli [1494, 191v] had done 

the same); while predecessors had simply done so without taking much notice, Rudolff 

states that this technique is “a completion of the coß, indeed in truth a completion 

without which it would not be worth much more than a trifle [pfifferling].” 

Rudolff’s book became and remained the defining basis for the coß. Schreyber’s book 

was reprinted several times, but nobody took over his symbolism; in the rudimentary 

presentation of algebra in the Deutsche Arithmetica from 1545 Stifel suggested to use the 

names sum, sum.sum and sum.sum.sum instead of radix, census, and cubus, with no more 

effect. In 1553, when Rudolff’s book, long of print and not to be found “even at triple or 

quadruple price” (an indication of its status), Stifel produced an “improved much 

augmented” new edition of the cherished work, from which this quotation is taken (fol. 

A 2v). 

Before that (namely in [1544]), Stifel had published the Arithmetica integra. Stifel there 

acknowledges the importance of Rudolff’s Coss, but he goes far beyond it—for instance 

by dealing in depth with Elements X transformed into arithmetical theory. He further 

invents a letter-based notation for many variables that allows higher powers and 

products, without using it himself for anything spectacular.18 

In his expositions of algebra from 1550 and 1551—the former printed in Basel, the latter in 

Paris—Scheubel does not advance on Rudolff and Stifel within algebra proper. His 

integration of algebra into Elements I–VI in the former is restricted to the insertion of 

numerical examples, going beyond advanced current practical geometries (and Heron’s 

Metrica, unknown at the time) only by including radicals and binomials in the range of 

accepted numbers. The separately republished algebraic introduction from 1551 

(reprinted in Paris in 1552, evidence that the book sold well) exhibits Humanist 

aspirations, firstly (fol. 2r) by endorsing Regiomontanus’s ascription of algebra to 

 
18 It had little immediate impact but may have inspired Jean Borrel (Buteo 1559), who like Stifel makes use of 
capital letters. Borrel’s notation is borrowed with due reference by Guillaume Gosselin (1577, 80r), and 
Gosselin may again have provided inspiration for Viète’s letter symbolism. 
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Diophantos, secondly by including a number of Greek arithmetical diagrams provided 

with Latin translations and algebraic solutions. 

Jacques Peletier tells us in L’Algebre from 1554 what was accessible in France. Peletier 

knows Pacioli’s Summa and Cardano’s Ars magna, and from Cardano he knows about 

Fibonacci. He also knows Stifel and Scheubel, and he has heard about Rudolff, Ries, and 

Nuñez but not seen their books (at the time, that of Nuñez was indeed an unpublished 

manuscript). Peletier himself takes Stifel as his basis, using also his symbolism and, even 

as classicizing condiments (fols 24r, 76r), an arithmetical riddle about Alexander the Great 

and the philosopher Calisthenes and the story about Archimedes and Hieron’s crown—

the latter going back to Rudolff.19 

To judge from the technical terminology, Viète’s primary reference for algebra was 

Gosselin, who knows Stifel, Cardano, and Peletier.20 Descartes learned algebra in his 

Jesuit school, La Flèche, from Christophorus Clavius’s Algebra. Even this is in the general 

style of Rudolff and Stifel. Clavius, a great pedagogue, makes his own formulations, but 

for instance his way to deal with negative numbers and negative powers (Clavius 1608, 

28–29) leaves no doubt that he had the Arithmetica integra (here [Stifel 1544, 249r–v]) on 

his desk while writing.  

So, what Viète (1591, 2v) experienced as “an old art defiled and befouled by barbarians” 

and what Descartes (1637, 19) described as “a confused and obscure art that puts the 

mind in difficulty instead of a science that cultivates it” was not Arabic algebra but 

abbacus algebra transformed and put into order as coß, and to some extent as unfolded by 

Cardano. 

 
19 (Stifel 1544, 234r, 267r) and (Rudolff 1525, 84r). Peletier knows that the story comes from Vitruvius’s De 
architectura IX, while Rudolff, even more precise, states that “I have read in Vitruvius, in the third chapter of 
the ninth book of his Architecture.” Stifel has nothing. It appears that Peletier has looked up the details in 
Vitruvius’s text. 
20 Thus, (Gosselin 1577, 47v). Gosselin has also read (Nuñez 1567; thus fol. 67r) but that is not a main 
inspiration. Gosselin’s terminology for several unknowns comes from Borrel, as said in note 18; for a single 
unknown it might have been taken from (Ramus 1560), not least the term latus for the first power (for 
which Borrel used a Florentine ρ, while his second power is ¨). In principle, Viète’s latus might thus come 
from Gosselin as well as Petrus Ramus, but there is so little substance in Ramus’s primer (and only one 
unknown) that Viète could have learned nothing even if he should happen to have known this anonymous 
piece. 
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This putting into order was effectuated by writers like Alexander, Schreyber, Rudolff, 

Stifel, and Cardano, not university teachers all of them but all strongly influenced by the 

Boethian-Euclidean norms of the university tradition. What Viète, Descartes, and their ilk 

knew as interesting mathematics was already different, however—we might speak of it 

as “Humanist mathematics,” rather perhaps as “post-Humanist.” 

Humanism had always been centered on the “civically useful” as understood in courtly 

culture. Around 1500 it had become clear that Latin letters might perhaps still be “a 

weapon more to be feared than a troop of horses,” as claimed by the Chancellor of 

Florence in 1406 (Gragg 1927, x)—but Latin letters were definitely no match for the 

French artillery, nor did they help much when the Portuguese and Spanish courts 

engaged in transoceanic travel. It was also during the years around 1500 that Pacioli, 

putting into writing a century’s experience of architects and military and hydraulic 

engineers, reinterpreted Aristotle’s opinion that mathematics is the most certain of 

sciences as a claim that all the other sciences derive from mathematics.21 

In consequence of such experience, some Humanists or court mathematicians with a 

Humanist bent engaged in publishing and translating the Greek mathematical classics. 

Bartolomeo Zamberti’s problematic translation of the Elements was published in 1505, 

and Grynaeus’s complete edition of the Greek Euclid with Proclos’s commentary in 1533. 

The editio princeps of Pappos’s Collection appeared in Basel in 1538—Commandino’s Latin 

translation in 1588, after having circulated in manuscript. The editio princeps of 

Archimedes was printed in 1544; Memmo’s Latin edition of books I–IV of Apollonios’s 

Conics appeared in 1537 (that of Commandino in 1566); Xylander’s Latin translation of 

Diophantos was published in 1575 (the Greek editio princeps only in 1621). When Viète 

reached mathematical maturity, a rather full range of the Greek mathematical classics 

was thus within his reach. 

However, this acquisition of new material was relevant for the transformation of algebra 

only because the mathematical undertaking itself had changed. The medieval university 

taught theory in lectures, and disputations and their written emulation in quaestiones 

 
21 (Pacioli 1509, 2r) in the dedicatory letter to Ludovico Sforza—written in 1498, before Sforza lost his court 
and Pacioli his position as a court mathematician precisely to the French artillery. 
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invited metamathematical reflection about the status of the object and objects of the 

theory. That is also what we see in Scheubel’s volumes: the algebra does not change the 

geometric theory, nor does the Humanist orientation expressed in the inclusion of Greek 

epigrams affect the algebra. 

The metamorphosis of the mathematical undertaking is epitomized in the famous 

concluding line of Viète's Isagoge (1591, 9r): nullum non problema solvere, “to leave no 

problem unsolved.” The mathematics of Viète, his antagonist Adriaan van Roomen, and 

later Descartes, Fermat, etc. was centered on problems within an agonistic culture which 

made van Roomen the antagonist of Viète.22 

The Italian abbacus culture, too, had been agonistic—the abbacus masters challenged 

each other with higher-degree algebraic problems and difficult versions of “the purchase 

of a horse,” “the finding of a purse,” and other recreational classics. This led to the 

invention of specious roots and made Benedetto da Firenze create a notation for first-

degree algebra with up to five unknowns. But nobody appears ever to have noticed 

Benedetto’s innovation—one reason at least being the exiguous number of practitioners 

who were at a level where they might have understood and appreciated it. The culture of 

the German Rechenmeister probably had a higher density; since it was a print culture, at 

least it had much more efficient communication. It was not intellectually agonistic, 

however; books were competing on the book market and were therefore almost 

invariably marketed on their title page as new. In this environment, the specious roots 

had no social role, and they never left their abbacus home. 

The culture of Viète and his kind was agonistic once again; but now its problems were 

those inspired by the Greek geometers. That was what inspired Viète and Descartes to 

create their very different versions of the new algebra, which turned out to be the hoped-

for tool for problem solving within the new mathematics, just as abbacus and 

Rechenmeister algebra had been an efficient tool for solving traditional problems. 

 
22 The details about the confrontation between van Roomen and Viète add an extra twist (Busard 1975, 533; 
1976, 22). It was brought about by an ambassador from the Netherlands who boasted to Henri IV that 
France did not possess a geometer able to solve a problem suggested by Adriaan van Roomen. That is, 
mathematical prowess was now taking over the symbolic power of Latin letters. I shall not pursue the 
question why this agonistic culture arose; still, this episode illustrates that it was not just a mathematicians’ 
fashion. 
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